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Overview of Talk

SPHINCS+ attack depends on a lot of obscure details
In this talk, I'm going to cover some basics to make the attack
easier to understand.

1. Some internal details of SPHINCS+
2. Some internal details of SHA256
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Part 1. Hash based signatures

4 bits (0..15) encoded in each hash chain
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Preliminaries: Hash Functions

What do we need from a hash function?
> Collision—resistanee (Important generally, not for our attack)
P> Preimage resistance
» Second preimage resistance
» Many other properties may be important for other applications

Note: cryptographic hash functions are designed to behave
randomly.
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Generic Attacks

For any hash function, we have these generic attacks:
» Preimages (Given H, find X so HASH(X) = H)
Just try 2" values for X until HASH(X) = H.

» Second Preimages (Given X, find Y so HASH(X) = HASH(Y))
Just try 2" values for Y until HASH(X) = HASH(Y).

If hash function behaves randomly, these are the best we can do.
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Multitarget attacks

» Suppose | have N different target hashes, H;

» Multitarget preimage: find X such that
HASH(X) € {Hi,...,Hn}

» This is N times faster than normal preimage attack

» SPHINCS+ has a huge number of target hash values—need to
prevent this attack!
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Defense: Prefixes

» To prevent multitarget attacks, SPHINCS+ employs a unique
prefix

» Every single hash call in SPHINCS+ has a unique prefix
> prefix = PK.seed || ADRS
» Result: Multitarget attacks blocked

H; HASH(Pl || Ml)

Hy «~ HASH(PN H MN)

» ...because hash H; always has only one valid prefix, P;
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What's a Signature

1. Public and Private keys:

» PK,SK «Generate()
» Private key: Only | know this
» Public key: | want everyone to know this

2. Signing:
» Sign with private key SK
» o +Sign(SK, M)
3. Verification:
» Verify(o, M, PK) — “good” or “bad”

Normally, we can sign many messages with one key.
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What's a One-Time Signature? A Few-Times Signature?

» One-time signature: | can only sign one message per keypair

> Signing two different messages lets an attacker forge
signatures!

» Note: Signing same message twice is fine.

» WOTS+ used for one-time signatures in SPHINCS+

» Few-times signature: | can sign up to N distinct messages
safely
» Sign too many—leak too much information—attacker can forge
signatures
» N is usually not super large—like 10 or 20.
» FORS used for few-times signatures in SPHINCS—+

SPHINCS+ uses both of these
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Winternitz/WOTS+ Signatures

4 bits (0..15) encoded in each hash chain
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» One-time signature scheme
» Based on hash chains
» Requires a checksum
> Used in SPHINCS+
WOTS+ is specific variant of Winternitz used in SPHINCS+
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Digression: Hash Chain

X, =X, X, =X, Y

» Compute each element in chain by hashing previous element.
Xi = HASH(X,'_]_)

» Only need to know starting value—can compute all other
values from there.

> Can't go backward in chain because of preimage resistance.

Hash-Based Signatures: 11 / 40



Winternitz: Signing 2 bits with one hash chain

X, X, e, e, ey
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» Compute hash chain xg > x1 > x0 > x3 > y
P> Xxq is private signing key; y is public key
» To sign value 01, we reveal xi.

» To verify, walk rest of chain: y = HASH(HASH(HASH(x)))
Works with chains of length 2%, for any w > 1/
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Hash chain of 2% entries encodes w bits

oo | " Xo,1 ’ X0,2 >

10 11 12

XL-T.O XL-l.l ’ XL-1,2 >

Private
Key

XX X—>

2" hash values in each line-- (256/w) chains

N

’ Xo,zW-1 ’ YO

> X1,2W»1 > Yl

» XL-l,ZW—l. YL_l

Encode 1st w bits of hash

Encode 2nd w bits of hash

Encode last w bits of hash

Public

Key

So we can encode 256-bit hash with [222] hash chains.
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Problem: Attacker can increment values

Arrrows represent hash operations!
> let: xg > x1 > X0 —> X3y
» vy is public key

» To sign value 01, we reveal xi.
» Anyone can walk rest of chain: y = HASH(HASH(HASH(x1)))

» But anyone can change a signature on 01 to a signature on 10
or 11...
P ...just keep computing the hash!

This is why we need a checksum
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The Winternitz checksum

Write HASH(message) as a sequence of a 4-bit digits, to1,.. -1
max = a(2" —1)

checksum <— max — Y7 ¢

vvvyYyy

Now, walking forward on any chain requires walking backward
on checksum!

» Checksum is written as a base-16 number and encoded in
three more hash chains

Checksum ensures any change requires going backward on some
hash chain
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Winternitz/WOTS+: Encoding the checksum

» Need 64 hash chains of length 2% to encode hash
» One for each 4 bits chunk of hash being signed.

» Maximum possible sum of values in those chains is:

64 x 15 =960

» 0 < Checksum < 960
Need lg(max +1) bits!

» Since each chain encodes 4 bits, we need three more chains to
encode checksum.

SPHINCS+ category 5, Winternitz signature is 67 hash values!
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Making a WOTS+ Public Key in SPHINCS+ (1)

» Private key = Xp. 66,0, generated pseudorandomly.
» prefix[i,j] = the unique prefix for this one time key, this chain
(1), and this step (j)
» For each i =10...66:
> Forj=1...15:
> X;; = HASH(prefix[i, ] || Xi,j—1)

» Note: Each hash operation incorporates a unique prefix.
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Making a WOTS+ Public Key in SPHINCS+ (2)

skoo skio skes0
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» Given final values in all 67 hash chains, Xo. 66,15

» Public key also includes a prefix for this particular one-time
key ID

» Public key preimage =

prefix || Xo,15 || X1,15 || - - - || Xe6,15

» Public key = hash of public key preimage
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How it's done in SPHINCS+

sko,o sk1,0 skee,0
H(ADRSp ol --.) | H(ADRSq gl ...) ‘ H(ADRSgg gl - - ) ‘
H(ADRSq 11 -..) | H(ADRS; 4||...) | eee | H(ADRSgg  l...)

)

i

o0 0 €

| H(ADRSg 141l .. .) “ H(ADRSy 14l ...) | | H(ADRSgg 141l .. .) ‘
v 2 v
pko pky pkes
H(PK.seed || ADRS® |[pko || pky || -.. || pkee)

Hash-Based Signatures:

19 / 40




How do we use one-time keys?

» One-time signatures aren't very useful-you want to sign many
times

» SPHINCS+ can sign up to 2% times
» First tool we need for this: A Merkle tree
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Merkle Trees
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A binary tree made by hashing things together!

» Make a list of 2" one-time signing keys, PKo 12, 271
» Hash each pair together to make input to next hash.
> Keep going until we reach the root.

The root contains the hash of all the leaves.
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Merkle Tree Path
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| have a list of 2" items.
» Compute Merkle tree and give you root.
» Later, | can prove PK; is member of list with n hashes.
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Hypertrees
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> A hypertree is a "tree of trees”
» Each tree is a Merkle tree full of one-time keys
» Each tree after the first is generated on the fly as needed

» Each tree has its root signed by a one-time key from the
previous tree

Hypertrees—Trees of Trees: 24 / 40



Big ldea

1. Generate Merkle Tree of 2% keys.
2. Use each key to sign a Merkle Tree of 2 trees.
3. Result: We have 2 keys.

And we can iterate this process as many times as we like
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Tree of Trees...of Keys

Pk~ sign »root < 220 keys

root< 2% keys

tree
path

“sign > message

‘ Final signature on message

Getting 20 keys with 229-element Merkle trees:
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Tree of Trees...of Keys

Getting 20 keys with 22-element Merkle trees:
> Generate a list of 220 one-time signing keys.

» For each of those keys, we have a tree of 220 one-time signing
keys we can generate.

» Using PRF, we can ensure we always generate same tree*.
» Produce paths through both trees + both signatures!

* This is critical-otherwise we might sign different things with
same key!
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We can have many levels of trees
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In SPHINCS+, we have huge numbers of trees

> Always around 2% leaves in the hypertree
P> Leaves are used to sign few times signature keys

» SPHINCS+256s (slower/smaller version): 8 layers of tree,
each tree of depth 8

» SPHINCS+256f (faster/larger version): 17 layers of tree, each
of depth 4
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SPHINCS+ Structure
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Structure of SPHINCS+ signatures

> Top level Merkle tree
» Root = (some of ) master public key
» Leaves = Winternitz one-time keys
» Hypertree of 264 or 298 one-time keys on bottom layer

> 8 layers of depth 8, or 17 layers of depth 4

» A Winternitz one-time key signs root of next Merkle tree

P |eaf of this tree = next WOTS key used.

> Messages are signed with FORS (few-time signature) keys

» The final one-time key in the hypertree always signs a FORS
key

» Each FORS key can sign a small number of times before losing
security

» This allows us to have smaller hypertree without losing security
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SPHINCS+ Structure
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Part 2: Hash functions and Merkle-Damgard Hashes
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Merkle-Damgard hashes: How SHA256 is Made

m m m *
iV 0 » h0 1 » h1 2 » h2m3“10 L hﬂna‘

» Our result only applies to SPHINCS+ when it is using
SHA256 to get 256-bit security

» Understanding it requires looking "under the hood” of
SHA256
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Merkle-Damgérd Hashes (1)

Big idea: Make a good fixed-length hash function, then build a
variable-length hash from it.

A S
iv w/l;\»h > l; =
\_/ 3

» We need a fixed-length compression function, F(h, m)
» hj, = hash chaining value, n bits. (Example n = 256)
»  hoyue = hash chaining value, n bits.
» m = message block, w bits. (Example w = 512)

» Pad the message, break into w-bit chunks, and process
sequentially.
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Merkle-Damgard Hashes: How SHA2 Works
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1. Pad message to integer multiple of 512 bits:
» 10* padding
» ..plus length of unpadded message (Merkle-Damgérd
strengthening)

. Break padded message into 512-bit blocks myq 1 »

1&gy

3. h_1 = fixed initial value, iv.
4, h,' — F(h,-,l,m,-) for i = 0,1,2,...,/(* 1.
5. Final h; is HASH(M)

Note: Only impact of mq._; is on h;
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Herding Hash Functions
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A problem

> | want to carry out a multitarget preimage attack
> My messages all start with different prefixes
» What can | do?
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The Diamond Structure: A Merkle-Tree Computed by

Finding Collisions.

P1 || part of key
—_———»
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» Starting from 2k different prefixes

» Find pairwise collisions to map these down to a single
intermediate hash value

» Result: A diamond structure that routes 2% input hash
chaining values into hash value

Note: Edges have multiple message blocks; nodes are hash

chaining values.
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How this

is used in our attack

P1]|freel . to, ——» Original P1 hash

P2 free2 |, _~ \ t, —» Original P2 hash
P3 || free3 ha / t, —» Original P3 hash

P4l freed / t;—» Original P4 hash
PS5 || free5 hs t, — Original P5 hash

h/h \ ts —» Original P6 hash

P7 || free7 P ts—»Original P7 hash

h13
P8 || free8 h /

7 ———» Original P8 hash

Hypertrees—Trees of Trees: 39 /40




Wrapup

> We've discussed internals of SPHINCS+
> WOTS+ signatures
> Merkle trees
» Hypertrees
» How SPHINCS+ works
» ...and internals of SHA256

» Merkle-Damgard hashes
» Multitarget attacks
» The diamond structure

Hypertrees—Trees of Trees: 40 / 40



	Hash-Based Signatures
	Hypertrees–Trees of Trees

